The barrier to interconversion between the two rotamers also is extremely low $(2.5 \text{ kJ mol}^{-1})$.

These results confirm the presence of a *cis* peptide bond geometry for the *N*-methyl peptide as suggested from solution studies. Furthermore, our observations suggest that intramolecular interactions arising from the *N*-methyl group and C-terminal esterification determine the conformational features of this blocked dipeptide. The lack of biological activity evident for this molecule, combined with the structural information, suggests that *cis* peptide bond geometry at the *N*-For-Met-X juncture may be unfavorable for stimulation of chemotactic responses in general. The general effect of C-terminal esterification on biological activity in these chemotactic peptides may also warrant further investigation.

References

- BENEDETTI, E., MORELLI, G., NEMETHY, G. & SCHERAGA, H. A. (1983). Int. J. Pept. Protein Res. 22, 1–15.
- EGGLESTON, D. S. (1988). Int. J. Pept. Protein Res. 31, 164-172.
- FREER, R. J., DAY, A. R., MUTHUKUMARASWAMY, N., PINON, D.,
- WU, A., SHOWELL, H. J. & BECKER, E. L. (1982). *Biochemistry*, **21**, 257–263.
- FRENZ, B. (1987). Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
- HEALD, S. L. (1982). PhD Dissertation. Duke Univ., Durham, NC, USA.
- IITAKA, Y., NAKAMURA, H., TAKADA, K. & TAKITA, T. (1974). Acta Cryst. B30, 2817–2825.

- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- JAIN, S. C. & SOBELL, H. M. (1972). J. Mol. Biol. 68, 1-20.
- JEFFS, P. W., HEALD, S. L., CHODOSH, D. F. & EGGLESTON, D. S. (1984). Int. J. Pept. Protein Res. 24, 442–446.
- JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- JOLAD, S. D., HOFFMAN, J. J., TORRANCE, S. J., WIEDHOPF, R. M., COLE, J. R., ARORA, S. K., BATES, R. B., GARGUILO, R. L. & KRIEK, G. R. (1977). J. Am. Chem. Soc. 99, 8040–8044.
- KITSON, D. H., AUBELJ, F., EGGLESTON, D. S. & HAGLER, A. T. (1986). Ann. NY Acad. Sci. pp. 145–162.
- Колма, Т., Кіdo, Т., Ітон, Н., Yamane, T. & Ashida, T. (1980). Acta Cryst. B36, 326-331.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCO, J.-P. & WOOLFSON, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- MORFFEW, A. J. & TICKLE, I. (1981). Cryst. Struct. Commun. 10, 781–783.
- PETCHER, T. J., WEBER, H. P. & RUEGGER, A. (1976). Helv. Chim. Acta, 59, 1480-1488.
- SPRINGER, J. P., COLE, R. J., DORNER, J. W., COX, R. H., RICHARD, J. L., BARNES, C. L. & VAN DER HELM, D. (1984). J. Am. Chem. Soc. 106, 2388–2392.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.
- VALENSIN, G., LEPRI, A., PASINI, F. L., ORRICO, A., CECCATELLI, L., CAPECCHI, P. L. & DIPERRI, T. (1986). Int. J. Pept. Protein Res. 28, 334-341.
- VITOUX, B., AUBRY, A., CUNG, M. T., BOUSSARD, G. & MAR-RAUD, M. (1981). Int. J. Pept. Protein Res. 17, 469-479.
- ZACHARIASEN, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1990). C46, 1318-1324

Structures of Two Products of Arynic Condensation of Ketone Enolates

By S. IANELLI AND M. NARDELLI*

Istituto di Chimica Generale, Università degli Studi di Parma, Centro di Studio CNR per la Strutturistica Diffrattometrica, Viale delle Scienze, I-43100 Parma, Italy

D. Belletti

Istituto di Strutturistica Chimica, Università degli Studi di Parma, Centro di Studio CNR per la Strutturistica Diffrattometrica, Viale delle Scienze, I-43100 Parma, Italy

AND P. GEOFFROY, M. C. CARRÉ, A. MOUADDIB AND P. CAUBÈRE

Laboratoire de Chimie Organique I, UA CNRS n° 457, Université de Nancy I, BP 239, 54506 Vandoeuvre-Les-Nancy CEDEX, France

(Received 31 May 1989; accepted 1 August 1989)

Abstract. 2,3,3a,4,5,9b-Hexahydro-1*H*-benz[*e*]indene-3-spiro-2'-(1,3-dioxolan)-5-one (1), $C_{15}H_{16}O_3$, $M_r =$

* To whom correspondence should be addressed.

0108-2701/90/071318-07\$03.00

244·3, monoclinic, $P2_1/a$, a = 11.023 (2), b = 12.020 (1), c = 9.419 (1) Å, $\beta = 100.74$ (1)°, $V = 1226\cdot1$ (3) Å³, Z = 4, $D_x = 1.323$ Mg m⁻³, λ (Cu K α) = 1.540562 Å, $\mu = 0.702$ mm⁻¹, F(000) = 520, T = 1.540562

© 1990 International Union of Crystallography

293 K, R = 0.0670 for 1293 observed reflections. 2,3,3a,7b,11b,11c-Hexahydro-1*H*-benzo[*a*]cyclopenta[*c*]biphenylene-1-spiro-2'-(1,3-dioxolan)-7b-ol (2), C₂₁H₂₀O₃, $M_r = 320.4$, triclinic, $P\overline{1}$, a = 16.921 (4), b = 10.378 (2), c = 9.672 (2) Å, $\alpha = 77.35$ (1), $\beta = 81.03$ (1), $\gamma = 93.72$ (1)°, V = 1628.3 (6) Å³, Z = 4, $D_x = 1.307$ Mg m⁻³, λ (Cu $K\alpha$) = 1.540562 Å, $\mu = 0.653$ mm⁻¹, F(000) = 680, T = 293 K, R = 0.0476 for 4397 observed reflections. The stereochemistry at the junction of the pentaatomic ring with the cyclohexene ring is *trans* in both compounds, while in (2) the H atom and the OH group at the junction of the cyclobutene with the cyclohexene ring are *cis*.

Introduction. Continuing our investigations on arynic condensation of ketone enolates (Grégoire, Carré & Caubère, 1986) we have studied the reaction of bromobezene on the enolate of 2-cycloheptene-1,4-dione 1-monoethylene ketal in the presence of the NaNH₂-'BuONa complex base. Instead of the expected products, three new compounds were isolated whose ¹H and ¹³C NMR spectra could be tentatively attributed to compound (1) and to two isomers of (2) with undetermined stereochemistry.

In order to ascertain these anticipated structures and to establish their actual stereochemistry, which is necessary to interpret the reaction mechanism, the X-ray diffraction study of crystals of (1) and one isomer of (2) was performed.

In the present paper the results of this study are illustrated and, based on them, a possible mechanism is proposed for the formation of these compounds.

Experimental. Table 1 summarizes the relevant data of the crystal-structure analyses. The intensities were measured on a Siemens AED diffractometer using Cu $K\alpha$ (nickel-filtered) radiation in the $\theta/2\theta$ scan mode with a 3–12° min⁻¹ scan speed and a (1·10 + 0·14tan θ)° scan width. The integrated intensities were measured in the 3–70° θ range using a modified version (Belletti, Ugozzoli, Cantoni & Pasquinelli, 1979) of the Lehmann & Larsen (1974) peak-profile analysis procedure. Correction for Lorentz and polarization effects was applied but not for absorption, while extinction was considered according to Zachariasen (1963).

Table 1. Experimental data for the X-ray analyses

	(1)	(2)
Reflections for lattice parameters		
No.	27	28
θ range (°)	16/39	27/34
Crystal size (mm)	$0.19 \times 0.48 \times 0.70$	$0.19 \times 0.28 \times 0.85$
Extinction parameter g	$0.22(3) \times 10^{-7}$	$0.37 (9) \times 10^{-7}$
h range	- 13/13	-20/20
k range	0/14	- 12/12
l range	0/11	0/11
Standard reflection	4 42	701
No. of measured reflections	2604	6043
No. of observed reflections	1293	4397
Condition for observed reflections	$l \ge 3\sigma(l)$	$l \geq 3\sigma(l)$
R _{int}	0.084	_
Max. LS shift to e.s.d. ratio	0.08	0.15
Min./max. height in final $\Delta \rho$ map (e Å ⁻³)	-0.13/0.14	-0.20/0.12
No. of refined parameters	201	594
R	0.0670	0.0476
wR	0.0676	0.0722
S	1.0124	0.5707
$k, g \{w = k/[\sigma^{2}(F_{o}) + gF_{o}^{2}]\}$	Unit weights	I, 0 ∙01484

The structures were determined by direct methods with SHELX86 (Sheldrick, 1986) and refined by anisotropic full-matrix least squares on F, using SHELX76 (Sheldrick, 1976). The H atoms were located from difference Fourier syntheses and refined isotropically.

There are no significant differences between the two crystallographically independent molecules in compound (2). From *PLUTO* (Motherwell & Clegg, 1976) drawings of the cell content and the *SYMMOL* routine of *PARST* (Nardelli, 1983a), it appears that there is a pseudo twofold screw axis at about $\frac{1}{4}a$, $\frac{1}{4}b$ running along c. The correctness of space-group choice was checked by using *TRACER* (Lawton & Jacobson, 1965), *NEWLAT* (Mugnoli, 1985) and *MISSYM* (Le Page, 1987).

The atomic scattering factors and the anomalousscattering coefficients are from *International Tables* for X-ray Crystallography (1974). The final atomic coordinates are given in Table 2.* Throughout the paper the averaged values are means weighted according to the reciprocals of the variances, and the corresponding e.s.d.'s are the largest of the values of the 'external' and 'internal' standard deviations (Topping, 1960).

The calculations were carried out on the Gould-SEL 32/77 computer of the Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma. In addition to the quoted programs, *LQPARM* (Nardelli & Mangia, 1984), *ORTEP* (Johnson, 1965)

^{*} Lists of structure factors, anisotropic displacement parameters, H-atom parameters, bond lengths and angles involving H, torsion angles and Cambridge Structural Database bibliographic references have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52736 (78 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 2. Atom coordinates $(\times 10^4)$ and equivalent
isotropic displacement parameters $(\mathring{A}^2 \times 10^4)$ withTable 3. Comparison of bond distances (\mathring{A}) and angles
 $(^\circ)$ with e.s.d.'s in parentheses e.s.d.'s in parentheses

	<i>e.s.</i>	d.'s in parer	itheses			(1)	(2) molecule A	(2) molecule B	Ауегаре
U_{eq}	is defined as one	third of the tra	ace of the ortho	gonalized	C102 C103	1·403 (6) 1·412 (6)	1·412 (2) 1·452 (2)	1.409 (3) 1.443 (2)	1·410 (2) 1·446 (6)
		U_{ij} tensor.			C14-02	1.416 (7)	1.427 (3)	1.418 (3)	1.422 (3)
					C15-03	1.380 (8)	1.425 (3)	1.421 (3)	1.420 (8)
^	x	У	z	U_{eq}	C14-C15	1.422 (12)	1.493 (3)	1.472 (5)	1.485 (11)
Compo	ound (1)	4600 (2)	10072 (4)	921 (16)	C9-01	1.230 (6)	1.423 (2)	1.424 (3)	1 542 (6)
02	2315 (3)	4099 (3)	6176 (4)	703 (15)	$C_{-C_{2}}$	1.500 (0)	1.542 (3)	1.536 (3)	1.536 (3)
03	-878(3)	1801 (3)	7850 (4)	695 (15)	C3-C12	1.553 (6)	1.541 (2)	1.550(3) 1.541(3)	1.530(3) 1.542(2)
CI	-412 (5)	2325 (4)	6722 (5)	555 (18)	C1-C11	1.536 (7)	1.519 (2)	1.524 (2)	1.522 (2)
C2	- 1516 (5)	2748 (4)	5553 (5)	654 (20)	C11-C12	1.500 (6)	1.532 (2)	1.535 (3)	1.531 (6)
C3	-1579 (5)	4007 (4)	5716 (5)	633 (19)	C11-C10	1.536 (6)	1.517 (2)	1.514 (3)	1.518 (4)
C4	- 960 (5)	6326 (4)	7022 (6)	718 (22)	C9-C10	1.505 (7)	1.592 (2)	1.593 (2)	1 511 (4)
6	- 508 (6)	7379 (S) 7517 (S)	/3/4 (6) 8274 (6)	840 (26)	$C_8 - C_9$	1.484 (7)	1.515 (2)	1.510 (2)	1.502 (1)
C7	1306 (5)	6602 (4)	8831 (5)	693 (22)	C12 - C13	1.494 (7)	1.408 (2)	1.406 (2)	1.407 (1)
C8	858 (4)	5524 (4)	8490 (5)	550 (18)	C4-C13	1.402 (7)	1.393 (3)	1.393 (3)	1.394(2)
C9	1575 (4)	4552 (5)	9160 (5)	604 (19)	C4C5	1.377 (8)	1.383 (3)	1.381 (3)	1.382 (2)
C10	1158 (4)	3393 (4)	8699 (5)	578 (18)	C5-C6	1.397 (8)	1.387 (3)	1.382 (4)	1.386 (3)
C11	268 (4)	3409 (4)	7235 (5)	495 (16)	C6C7	1.370 (8)	1.388 (3)	1.384 (3)	1.385 (3)
C12	- 766 (4)	4224 (4)	7223 (5)	526 (17)	C7—C8	1.402 (8)	1.386 (3)	1.402 (2)	1.397 (5)
	- 295 (4)	550 (5)	/30/ (3) 6078 (7)	522 (17) 804 (20)	C10-C17	_	1.527 (2)	1.525 (3)	1.526 (2)
C14	-398(8)	738 (6)	8016 (10)	1379 (47)	C16-C17	_	1.384 (2)	1.376 (2)	1.380 (4)
010	570 (0)	/50 (0)		1515 (41)	C17-C18	_	1.385 (2)	1.388 (3)	1.386 (2)
Comp	ound (2)				C18-C19	_	1.396 (3)	1.387 (4)	1.393 (4)
014	1715.5 (7)	379.4 (13)	534.5 (14)	369 (4)	C19C20	_	1.380 (3)	1.388 (4)	1-383 (4)
02 <i>A</i>	- 846.3 (8)	- 3538.9 (12)	3203.5 (14)	432 (4)	C20-C21	_	1.398 (3)	1.386 (4)	1.394 (6)
O3A	- 776-5 (7)	-2093-9 (11)	1032-1 (13)	367 (4)	C21-C16	_	1.375 (3)	1.390 (3)	1.382 (8)
C1A	- 856 (1)	-2180 (2)	2567 (2)	331 (5)	CI 02 CI4	100.0 (4)	106.5 (2)	108.2 (2)	107.5 (7)
C2A	- 1622 (1)	-1562 (2)	3076 (2)	423 (6)	$C_1 = 0_2 = C_1 + C_1 $	109.0(4) 108.2(5)	108.1(2)	108.5 (2)	107.5(7)
CIA	- 1349 (1)	-108(2)	3029 (3)	453 (7)	02-C1-O3	107.4 (4)	105.5 (1)	106.0 (2)	105.7 (3)
C5A	332 (1)	3225 (2)	3355 (2)	460 (7)	O3-C1-C11	111-5 (4)	109-9 (1)	110.0 (2)	110.0 (2)
C6A	1151 (1)	3107 (2)	3195 (2)	439 (7)	O3-C1-C2	109.2 (4)	109.2 (2)	109.8 (2)	109.5 (2)
C7A	1438 (Ì)	1999 (2)	2784 (2)	390 (6)	02-C1-C11	113.2 (4)	113-3 (2)	113-2 (2)	113-2 (1)
C8A	923 (1)	1020 (2)	2524 (2)	307 (5)	02 - C1 - C2	113.0 (4)	113.3 (2)	114.4 (2)	114.6 (5)
C9A	1278-1 (9)	- 105.7 (16)	1957-5 (17)	293 (5)	$C_2 = C_1 = C_1 = C_1$	102.3 (4)	105.0 (2)	105.5 (2)	105.4 (2)
CIUA	672·1 (9)	- 1397-7 (16)	2157.0 (18)	304 (5)	C2-C3-C12	103.3 (4)	1001 (2)	104.2 (2)	100.5(3) 104.4(3)
C12A	- 449.0 (9)	86.3 (16)	2357-3 (18)	317 (5)	C5-C4-C13	121-2 (5)	121.0 (2)	121.0 (2)	121.0 (1)
CI3A	92 (1)	1144 (2)	2685 (2)	317 (5)	C4—C5—C6	120-1 (6)	120-4 (2)	120.6 (2)	120-5 (1)
C14A	-1117 (2)	- 4259 (2)	2237 (3)	517 (8)	C5-C6-C7	119.8 (6)	119-1 (2)	119.6 (2)	119.4 (2)
C15A	- 742 (2)	- 3401 (2)	804 (3)	527 (8)	$C_{0} - C_{1} - C_{8}$	120.9 (5)	121.2 (2)	120.4 (2)	120.8 (3)
C16A	1765 (1)	-997 (2)	2902 (2)	330 (5)	C7C8C13	119.5 (4)	118.8 (2)	119.9 (2)	119.7 (1)
CI7A	1234 (1)	-2116 (2)	3078 (2)	341 (5)	C9C8C13	120.7(4)	121.4 (2)	121.6 (2)	121.4(2)
	2039 (1)	- 3359 (2)	3903 (2) 4536 (2)	448 (7) 505 (7)	O1C9C8	119.8 (5)	110-3 (1)	110.4 (2)	
C20A	2568 (1)	-2241(2)	4348 (2)	503 (7)	C8-C9-C10	119.8 (4)	115.5 (2)	115.8 (2)	—
C21A	2448 (1)	-1014 (2)	3510 (2)	445 (7)	01	120.4 (4)	114-4 (1)	113.7 (2)	
01 <i>B</i>	- 6771-2 (8)	- 5277 7 (14)	- 3442-1 (16)	450 (5)	C9-C10-C11	110.9 (4)	114.6 (2)	114.5 (2)	119.5 (4)
02 <i>B</i>	-4080 (1)	- 1672 (2)	- 3640 (2)	608 (6)		111.9 (4)	112.2 (2)	119.2 (2)	110.5 (4)
CIR	-4153.5(8) -4123(1)	$-3021 \cdot 1(12)$ -3016(2)	-3192.3(14) -3711(2)	434 (4)	CI-CII-CI2	103.1 (4)	101.5 (2)	101.2 (2)	101.5 (4)
C2B	-3412(1)	-3742(3)	-3240(3)	541 (8)	C3C12C11	101·9 (4)	102·6 (2)	102.6 (2)	102.5 (2)
C3B	-3749 (1)	- 5179 (2)	- 2496 (3)	529 (8)	C11C12C13	111.8 (4)	111.5 (2)	111.6 (2)	111·6 (I)
C4B	- 5001 (1)	- 7462 (2)	-892 (2)	463 (7)	C3C12C13	118.2 (4)	119.2 (2)	117.9 (2)	118.5 (4)
C5B	- 5571 (2)	-8405 (2)	26 (2)	545 (8)	C8C13C12	119.1 (4)	118.4 (2)	118.6 (2)	118.6 (1)
C6B	-6378 (1)	-8220(2)	163 (2)	526 (7)	C4-C13-C12	118.2 (5)	122.9(2) 118.7(2)	118.5 (2)	118.6 (1)
C1B C8B	-6043(1)	- 7004 (2) - 6094 (2)	- 1532 (2)	440 (7)	02C14C15	105.9 (5)	$102 \cdot 1$ (2)	104.3 (2)	103.4 (9)
C9B	-6336(1)	-4896(2)	-2424(2)	347 (6)	O3C15C14	109.4 (6)	103·0 (2)	104.5 (2)	104.0 (10)
CIOB	-5682(1)	- 3653 (2)	- 3096 (2)	364 (6)	C8-C9-C16	_	117.4 (2)	117.6 (2)	117.5 (1)
C11 <i>B</i>	-4854 (1)	- 3854 (2)	- 2729 (2)	346 (5)	01-C9-C16		111-2 (2)	111-2 (2)	111-2 (1)
Cl2B	-4628 (1)	- 5262 (2)	- 2734 (2)	345 (6)	CIU-C9-CI6	_	80.4 (1) 85.8 (1)	80·2 (2)	80.4 (1) 85.9 (1)
CI3B	- 5223 (1)	- 6295 (2)	- 1687 (2)	338 (5)	CII-CI0-CI7	_	118.8 (2)	03.0 (2) 117.6 (2)	63.8 (1) 118-2 (6)
CIAP	-4140(2) -3840(2)	- 1089 (2)	- 5977 (3)	632 (10)	C17C16C21		122.9 (2)	121.8 (2)	122.4 (6)
C14Ø	- 5040 (3) - 6792 (1)	- 3981 (2)	- 3036 (3) - 1626 (2)	610 (14) 401 (6)	C9-C16-C21	_	143.7 (2)	144.2 (2)	144.0 (2)
C17B	-6226 (1)	- 2907 (2)	-2203(2)	411 (6)	C9-C16-C17	-	93·4 (2)	93·9 (2)	93·6 (2)
C18B	-6279 (2)	-1704 (2)	- 1808 (3)	553 (8)	C10-C17-C16	—	94-4 (2)	94-3 (2)	94·4 (1)
C19 <i>B</i>	- 6960 (2)	- 1626 (3)	-838 (3)	657 (10)	C16-C17-C18	—	121.9 (2)	122.5 (2)	122.2 (3)
C20B	- 7534 (2)	- 2707 (3)	-261 (3)	679 (11)	C10-C17-C18		143.6 (2)	143.0 (2)	143.3 (3)
C21 <i>B</i>	-7466 (1)	- 3918 (3)	-628 (3)	558 (9)	C18-C18-C19		122.2 (2)	121.7 (2)	113·/(1) 122·0(2)
					C19-C20-C21		121.9 (2)	122.2 (3)	122.0 (2)
and	MOLDRAW	(Lationas	Dorzoni &	Vitorho	C16-C21-C20		115.5 (2)	115-8 (2)	115.6 (2)

and MOLDRAW (Ugliengo, Borzani & Viterbo, 1988) have been used.

weighted means are given. The ORTEP (Johnson, 1965) drawings of the molecules are displayed in Fig. 1.

Discussion. Bond distances and angles are compared in Table 3 and, when averaging is meaningful, the

Analysis of the anisotropic atomic displacements

The most significant results of the analysis of the anisotropic atomic displacements are quoted in Table 4. This analysis was carried out in terms of the **LST** rigid-body model according to Schomaker & Trueblood (1968) and Trueblood (1978), considering also the internal motions according to Dunitz & White (1973) by using the *THMV* progam (Trueblood, 1984).

As can be seen from the data of Table 4 and from the ellipsoids of Fig. 1, the internal motions (or statical displacements) have some relevance particularly for some atoms of the dioxa rings. If exception is made for the O3—C15 distance in compound (1), which increases from 1.380 Å to the more reasonable value of 1.438 Å, all the other corrections are in the ranges 0.007–0.011 (av. 0.009), 0.001–0.006 (av. 0.002) and 0.002–0.004 (av. 0.003) Å in compound (1), compound (2) molecule A and compound (2) molecule B, respectively.

Fig. 1. ORTEP (Johnson, 1965) drawings of the molecules. Top: compound (1), middle: compound (2) molecule A, bottom: compound (2) molecule B. Ellipsoids are at 50% probability.

Table 4. Results of the anisotropic atomic displacement analysis

Compound (1)	Librati group C14 C15	ng p	Libration along C1–O2 C1–O3		Group libration amplitude 6.5 (12) [°] 17.1 (8)
(2) molecule A	C15 O1 C2, C3 O2, O3 C18, C19,	C20, C21	O3C1 C9C16 C1C12 C1 <i>M</i> (C14C <i>NBZF</i>	15)	5·3 (12) 3·9 (9) 5·1 (7) 3·3 (10) 4·2 (5)
(2) molecule B	C15 C14 C2, C3 O2, O3 C18, C19,	C20, C21	02C1 03C1 C1C12 C1 <i>M</i> (C14C <i>NBZF</i>	15)	2·3 (14) 5·1 (9) 6·0 (7) 4·0 (11) 4·2 (7)
				Rigid	R _{wU} Internal
Compound (1) (2) molecule A (2) molecule B	$\overline{\Delta} \times 10^4$ 93 (193) Å ² 34 (48) 48 (77)	$\overline{\Delta U} \times 10^4$ 34 (41) Å ² 25 (31) 30 (38)	$ \overline{\sigma}(U_o) \times 10^4 $ 34 Å ² 9 11	body 0·163 0·134 0·121	motion 0.081 0.102 0.098

M(C14-C15) = midpoint of the C14-C15 bond; NBZF = perpendicular straight line at the center of the benzene ring F; $\overline{\Delta} =$ mean difference of the mean-square vibrational amplitudes along the interatomic directions for all pairs of atoms; $\Delta U = U_0(obs.) - U_0(calc.)$; $R_{wU} = [\sum (w\Delta U)^2 / \sum w^2]^{1/2}$; $\overline{\sigma}(U_o) =$ mean e.s.d. of U_o 's.

Configurations at the junctions and possible reaction mechanism

According to the structures of (1) and (2) a possible mechanism for the arynic condensation is proposed in the following scheme:

The stereochemistry at the B/C and E/C ring junctions of the two isomers of (2) allows us to conclude that the well known *syn* addition of arynes on ketone enolates may take place on both faces of (5).

Still more interesting, and intriguing, is the *trans* nature of the *BC* junction in compound (1). Indeed,

it is well established (see, for example, Caubère, 1978) that aryne condensation of seven-membered ketone enolates leads to benzocyclobutenolates (3) with *cis* junctions. So the *trans* stereochemistry of (1)may be due either to a privileged conformation of (4) or to a cis-trans isomerization of its unsaturation. Moreover, the possibility of cyclization of (4), leading to (5) with a cis junction followed by further isomerization, cannot be discarded. Thus the present structural study leads to new questions concerning the intimate mechanism of these reactions.

As shown by the Newman projections in Fig. 2 and the drawings of the molecules in Fig. 1, the configurations at the chiral centers are $S(C_{11})$ and R(C12) in compound (1) and R(C9), R(C10), R (C11) and R (C12) in compound (2). Of course the enantiomers are also present, the space groups both being centrosymmetric.

Puckering of the rings and general conformation of the molecules

It is doubtful that the small amount of puckering of the benzene and cyclobutene rings in molecule Bof compound (2) is really significant, as the same deformations are not observed in molecule A. For the other three rings puckering is quite significant as expected and is comparable in the three molecules, as shown by the data of Table 5. The only exception is ring A in compound (1) which is much less puckered

47.7(4) 45.4(2) - 30 -71(3) -67(1) -63(1) C 12 C10 578(5) 0.3(1) H11 59.0(2) 56(3) 62(1) °C17 C10 58.4(2) C11 0.1(2) 64(1) Ĉ8 C13 C2 37.4(4 86(2) 73(1) 69(1) 74.5(2) H11 75.5(2) -36(2) -53(1) C11 44.3(6)/ 03 -48.5(2), 77.0(5) 02 -48.1(2)/ 69.2(2) 70.2(2) C10

Fig. 2. Newman projections along the C11-C12, C9-C10 and C1-C11 bonds showing the configurations at the junctions and the orientation of the dioxa ring; data (°) above refer to compound (1), data in the middle to compound (2) molecule A, and data below to compound (2) molecule B.

than in the two molecules of compound (2). Probably this is only an apparent effect due to the particularly high dynamical or static anisotropic displacements affecting C15 in compound (1) (see Fig. 1).

The dioxa ring is approximately perpendicular to the flat central part of the molecule formed by the B, C and D fused rings, while the planar benzocyclobutene system is bent by 45° with respect to the central moiety, as shown by the values of the dihedral angles formed by the mean planes through the rings:

(1)	(2) molecule A	(2) molecule B
95·4 (2)°	92·2 (1)°	86·8 (1)°
5.8 (2)	6.1 (1)	6·1 (1)
10.3 (2)	13.6 (1)	13.0 (1)
	45.7 (1)	46·4 (1)
	0.6 (1)	2·2 (1)
	(1) 95·4 (2)° 5·8 (2) 10·3 (2) —	(1) (2) molecule A 95.4 (2)° 92.2 (1)° 5.8 (2) 6.1 (1) 10.3 (2) 13.6 (1) - 45.7 (1) - 0.6 (1)

The abnormally high bond distance, C9-C10 =1.592(2) Å, at the junction of the cyclobutene with the cyclohexene ring in compound (2) is worth noticing. This value, quite significantly higher (Δ/σ) = 28.4) than the expected $C(sp^3)$ -- $C(sp^3)$ single-bond value, 1.542 (1) Å (Dewar & Schmeising, 1960), is probably due to the distorted hybridization of the C atoms involved and to some interaction between O1 and H10 which are at distances of 2.57(2) and 2.60(2) Å in molecules A and B, respectively.

Deformation of the benzene rings

There is a benzene fused with a cyclohexene ring in both compounds and a benzene fused with a cyclobutene ring in compound (2). The results of the analysis of the deformation of these fused benzene rings are quoted in Table 6 where the literature data refer to 23 compounds for cyclobutene and 379 for cyclohexene derivatives retrieved in the 1988 release of the Cambridge Structural Database (Allen, Bellard, Brice, Cartwright, Doubleday, Higgs, Hummelink, Hummelink-Peters, Kennard. Motherwell, Rodgers & Watson, 1979; Allen, Kennard & Taylor, 1983). The criterion used for the search was to consider only the analyses with $R \leq$ 0.07 of compounds containing the above monocycloalkenobenzene moieties with no substituents at the benzene ring and no interaction with metal centers. The averaged values of Table 6 were calculated assuming a local m symmetry for the alkenobenzene moiety except for the angles ε and δ in the benzocyclohexene moiety of compounds (1) and (2), as the differences for them are quite significant $(\Delta/\sigma > 10.6)$ and systematic.

The results obtained for the benzocyclobutene moiety agree quite well with those found by Allen (1981) in his study on the effect of small-ring fusion

Table 5. Ring-puckering analysis

	C13,	Ring C C13.C8.C9.C10.C11.C12		Ring <i>B</i> C11,C12,C3,C2,C1		Ring A C1,O2,C14,C15,O3	
Compound	Qr	DAP	Q_r	DAP	Qr	DAP	
(1)	0.488 (4)	D(C8) = 0.0472 (31) (S)	0.458 (5)	D(C2) = 0.0070 (20) (HC)	0.014 (5)	D(C14) = 0.0013 (25) (HC)	
(2) molecule A	0.524 (2)	D(C8 - C9) = 0.0033 (8) (HC)	0.450 (2)	D(C11) = 0.0398 (10) (E)	0.357 (3)	D(C15) = 0.0126 (12) (E)	
(2) molecule B	0.512 (2)	D(C8 - C9) = 0.0047 (9) (<i>HC</i>)	0.456 (2)	D(C2) = 0.0444 (10) (HC)	0.268 (4)	D(C15) = 0.0046 (28) (E)	

С

 $\frac{S}{\Sigma}$

Qr = total puckering amplitude (Å) (Cremer & Pople, 1975); DAP = minimum displacement asymmetry parameter (Nardelli, 1983b); HC = half-chair, E = envelope, S = sofa.

Table 6. Comparison of the geometries of the fused benzene rings

See text for the retrieval of literature data.

on the geometry of benzene. In particular the narrowing of the β angle related to the narrowing of the ε angle is observed confirming the picture of a 'push-pull' effect pivoted on the atoms of the junction; this effect is of the same kind but more relevant than that observed for the indane system (Ianelli, Nardelli, Geoffroy, Carré, Jamart-Grégoire & Caubère, 1989).

The strain caused by fusion is relaxed in the benzocyclohexene moiety where the endocyclic angles at the benzene ring tend to assume the 120° value. The asymmetry observed for the δ and ε angles for this moiety in compounds (1) and (2) is systematic and probably caused by the steric interaction between the benzene and the cyclopentane ring B.

Crystal-packing analysis

Packing in compound (1) is essentially determined by normal van der Waals contacts, while in compound (2) the presence of the -OH group allows the formation of the following hydrogen bonds: O1A—HOA···O3A($\bar{x}, \bar{y}, \bar{z}$): O···O = 2·815 (2), $H \cdots O = 1.96 (2) \text{ Å}, \quad O - H \cdots O = 177 (2)^{\circ}; \quad O1B - C$ HOB···O3B($\overline{x} - 1, \overline{y} - 1, \overline{z} - 1$): $O \cdots O = 2.836(2),$ $H \cdots O = 1.93$ (3) Å, $O - H \cdots O = 177$ (2)°.

The packing analysis, carried out by using the OPEC program (Gavezzotti, 1983) and considering the H atoms in the positions calculated by the

program (C-H = 1.07 Å), PARST gave the following data:

	(1)	(2)
C_{κ}	0.705	0.678
V _M	216.2	276-2
S_{M}	252.6	316-5
$\sum r_i$	49.17	64.65

where C_K is the Kitaigorodskii (1973) packing coefficient, V_M is the molecular volume (Å³), S_M is the molecular free surface $(Å^2)$ as defined by Gavezzotti (1985), and $\sum r_i$ is the sum of the van der Waals radii of atoms in the molecule $r_{\rm H} = 1.17$, $r_{\rm C} =$ $1.75, r_0 = 1.40$ Å).

The values of S_M are larger by 4.5% than those calculated with the linear equations derived in the previous paper (Ianelli et al., 1989), probably as a consequence of less overcrowding and greater ringstrain effects. The lower value of the Kitaigorodskii coefficient, found for compound (2), can probably be related to the hydrogen bonding present in this compound.

The files of the Cambridge Crystallographic Database were accessed through 'Servizio Italiano di Diffusione Dati Cristallografici, CNR'.

References

- ALLEN, F. H. (1981). Acta Cryst. B37, 900-906.
- Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., DOUBLEDAY, A., HIGGS, H., HUMMELINK, T., HUMMELINK-PETERS, B. G., KENNARD, O., MOTHERWELL, W. D. S., RODGERS, J. R. & WATSON, D. G. (1979). Acta Cryst. B35, 2331-2339.
- ALLEN, F. H., KENNARD, O. & TAYLOR, R. (1983). Acc. Chem. Res. 16, 146-153.
- BELLETTI, D., UGOZZOLI, F., CANTONI, A. & PASOUINELLI, G. (1979). Gestione on Line di Diffrattometro a Cristallo Singolo Siemens AED con Sistema General Automation Jumbo 220. Internal Report 1-3/79. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy.
- CAUBÈRE, P. (1978). Top. Curr. Chem. 73, 49-124.
- CREMER, D. & POPLE, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- DEWAR, M. J. S. & SCHMEISING, H. N. (1960). Tetrahedron, 11, 96-120.
- DUNITZ, J. D. & WHITE, D. N. J. (1973). Acta Cryst. A29, 93-94.
- GAVEZZOTTI, A. (1983). J. Am. Chem. Soc. 105, 5220-5225.
- GAVEZZOTTI, A. (1985). J. Am. Chem. Soc. 107, 962-967.
- GRÉGOIRE, B., CARRÉ, M. C. & CAUBÈRE, P. (1986). J. Org. Chem. **51**, 1419–1427.

IANELLI, S., NARDELLI, M., GEOFFROY, P., CARRÉ, M. C., JAMART-GRÉGOIRE, B. & CAUBÈRE, P. (1989). Acta Cryst. B45, 178-189.

International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99–102, 149. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)

- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- KITAIGORODSKII, A. I. (1973). Molecular Crystals and Molecules, p. 106. New York: Academic Press.
- LAWTON, S. L. & JACOBSON, R. A. (1965). The Reduced Cell and its Crystallographic Applications. Ames Laboratory. Available from the Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, US Department of Commerce, Springfield, Virginia, USA.
- LEHMANN, M. S. & LARSEN, F. K. (1974). Acta Cryst. A30, 580-589.

LE PAGE, Y. (1987). J. Appl. Cryst. 20, 264-269.

MOTHERWELL, W. D. S. & CLEGG, W. (1976). *PLUTO*. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.

- MUGNOLI, A. (1985). J. Appl. Cryst. 18, 183-184.
- NARDELLI, M. (1983a). Comput. Chem. 7, 95-98.
- NARDELLI, M. (1983b). Acta Cryst. C39, 1141-1142.
- NARDELLI, M. & MANGIA, A. (1984). Ann. Chim. (Rome), 74, 163–174.
- SCHOMAKER, V. & TRUEBLOOD, K. N. (1968). Acta Cryst. B24, 63-76.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1986). SHELX86. Program for crystal structure solution. Univ. of Göttingen, Federal Republic of Germany.
- TOPPING, H. (1960). Errors of Observation and their Treatment, p.91. London: Chapman & Hall.
- TRUEBLOOD, K. N. (1978). Acta Cryst. A34, 950-954.
- TRUEBLOOD, K. N. (1984). THMV. Univ. of California, Los Angeles, USA.
- UGLENGO, P., BORZANI, G. & VITERBO, D. (1988). J. Appl. Cryst. 21, 75.
- ZACHARIASEN, W. H. (1963). Acta Cryst. 16, 1139-1144.

SHORT-FORMAT PAPERS

Contributions intended for publication under this heading should follow the format given in the Checklist for Authors [Acta Cryst. (1985). C41, 1–4].

Acta Cryst. (1990). C46, 1324-1326

Structure of Pentacoordinated b-Carbonyl-cd-(N-hydroxy-N-nitrosobenzenaminato-O,O')-ae-bis(triphenylphosphine)rhodium(I)

BY S. S. BASSON, J. G. LEIPOLDT AND J. A. VENTER

Department of Chemistry, University of the Orange Free State, PO Box 339, Bloemfontein 9300, Republic of South Africa

(Received 31 July 1989; accepted 5 February 1990)

Abstract. [Rh(C₆H₅N₂O₂)(CO){P(C₆H₅)₃}₂], $M_r = 792.6$, triclinic, PI, a = 12.298 (9), b = 12.658 (2), c = 13.488 (3) Å, $\alpha = 90.72$ (2), $\beta = 106.38$ (3), $\gamma = 112.76$ (3)°, V = 1840.1 (2) Å³, Z = 2, $D_m = 1.42$ (1), $D_x = 1.43$ g cm⁻³, λ (Mo K α) = 0.71073 Å, $\mu = 5.8$ cm⁻¹, F(000) = 812. Final R = 0.070 for 3406 observed reflections. The Rh atom has trigonal bipyramidal coordination with distortion in the trigonal plane [C—Rh—O angles of 159.6 (5) and 130.8 (5)° for amine and nitroso oxygens of the cupferron ligand respectively]. Bond distances: Rh—C = 1.77 (1), Rh—O(nitroso) = 2.339 (9), Rh—O(amine) = 2.147 (8), Rh—P = 2.323 (4) and 2.342 (4) Å.

Experimental. Yellow crystals of the title complex crystallized after 30 min from 0.6 cm^3 acetone solution containing 23 mg (0.043 mmol) [Rh(C₆H₅N₂O₂)-0108-2701/90/071324-03\$03.00

(CO)(PPh₃)] and 100 mg (0.38 mmol) PPh₃. Density determined by flotation in sodium iodide solution. Crystal size $0.09 \times 0.15 \times 0.2$ mm, Enraf-Nonius CAD-4F diffractometer, graphite monochromator, Mo K α radiation, $\omega/2\theta$ -scan technique, variable scan width $\Delta \omega = (0.77 + 0.35 \tan \theta)^\circ$, scan speed maximum 3.3° min⁻¹ in ω and minimum corresponding to 50 s per reflection, unit-cell parameters from least-squares refinement of 25 reflections with $7 < \theta < 15^{\circ}$, measuring range $3 < \theta < 25^{\circ}$, no absorption corrections. data corrected for Lorentz and polarization effects, mean intensity of three standard reflections measured every 3600 s of X-ray exposure varied from initial value by -0.8%, 0 < h < 14, -15 < k < 13, -16 < l< 15. 6415 unique reflections of which 3406 observed reflections with $I > 3.0\sigma(I)$ were used for all calculations (XRAY72 system, Stewart, Kruger, Ammon,

© 1990 International Union of Crystallography